
30 The Delphi Magazine Issue 32

Surviving Client/Server:
OLE Automation With SQL Server
by Steve Troxell

Last month we looked at MIDAS
and Delphi 3’s DCOM-based

support for multi-tiered database
development. Dave Jewell has
been enlightening us about COM
and OLE in general for several
months. Since we are in a COM/
OLE frame of mind, I thought we’d
look at an OLE interface for a
client/server RDBMS. Microsoft
SQL Server ships with a library of
OLE Automation objects collec-
tively referred to as Distributed
Management Objects (DMO). With
these objects you can access any
aspect of the SQL Server environ-
ment you care to mention. You can
start or stop the SQL Server serv-
ice, manage user logins and per-
missions, backup and restore
databases, execute SQL queries,
and a number of other capabilities.

OK, so you can do most of that
anyway by issuing SQL statements.
What’s the advantage of using
DMO? First, we can bypass the
Borland Database Engine and
eliminate the need to install and
configure the BDE. Of course, by
doing so we lose all those nifty data
access components and data-
aware controls. But we saw in

Issues 25 and 26 how we can make
custom TDataset descendants
which can access the data through
any API.

Second, the BDE by necessity
must ‘homogenize’ its capabilities
in order to perform equally well
across a number of database plat-
forms. By going straight to the pro-
prietary database API, we can
unlock a few features of the server
that previously were difficult or
impossible to take advantage of.

Third, the object-oriented archi-
tecture of DMO encapsulates many
routine functions we might other-
wise perform with SQL queries.
Some aspects of development may
be easier to work with in an object-
oriented design rather than with
unstructured SQL.

The fourth advantage is that it’s
neat!

The classes in the DMO architec-
ture are arranged in a hierarchy as
shown in Figure 1. The major
classes are listed across the top
with the ancillary classes listed
beneath. For example, the
SQLServer object contains collec-
tions of objects for manipulating
the server configuration, user
logins, the server registry, etc. The
DMO classes generally map

➤ Figure 1

Application SQLServer Database Table

Backup Device DBObject Column

Permission Login StoredProcedure Index QueryResults

Language Rule Trigger

HistoryFiler RemoteServer Default Key

Names Configuration User Check

Backup Executive DBObject Column

Property Registry Group

IntegratedSecurity DBOption

Alert TransactionLog

Operator SystemDatatype

UserDefinedDatatype

Publication

directly to an entity within the SQL
Server environment. The applica-
tion connects to one or more
SQLServer objects, each with one
or more database objects, each
with one or more table objects,
and so on.

Getting Started With DMO
Once we get past the scary termi-
nology like ‘COM,’ ‘interfaces,’
‘class factories’ and their ilk, we
realize that developing with a
well-designed OLE Automation
library is no more daunting than
working with any other
object-oriented architecture. We
just have to keep a few more
housekeeping chores in mind.

To build an application that uses
DMO, we start with the DMO type
library, which is a file called
SQLOLE65.TLB that ships with SQL
Server. If we copy this file into our
project directory and open it in
Delphi, we get the Type Library
Editor as shown in Figure 2. Click-
ing the Refresh button will pro-
duce a Delphi interface file called
SQLOLE_TLB.PAS. This gives us
Delphi class definitions for all the
DMO objects. Because some of the
identifiers in DMO conflict with
Delphi identifiers, several of them
are renamed when the interface
file is generated. A list of all
changes is shown in the Type
Library Editor and also stored as
comments in the interface file. You
may have to go into the Type
Library Editor and manually
change the name of DMO’s Appli-
cation class to avoid a conflict with
Delphi’s Application variable in
the project file.

By including the SQLOLE_TLB unit
in the uses clause, we can refer-
ence all the classes and interfaces
defined in the type library. In most
respects the DMO classes behave
much as you’ve come to expect
from working with the Delphi VCL.



April 1998 The Delphi Magazine 31

There are some key differences
worth noting before we dive in.

Indexed properties of a class are
normally used to access a
collection of objects referenced by
an index number. In the VCL, for
example, the TQuery.Fields prop-
erty accesses the collection of
TField objects of the query result
set. The TStringList.Strings prop-
erty accesses the individual
strings in the list (even though
String is not strictly speaking an
object).

DMO breaks up this type of refer-
ence into two categories, indexed
properties and collections.
Indexed properties always return a

➤ Figure 2
scalar datatype, while collections
are used to reference a set of
related objects. The significant dif-
ference between the two is merely
the syntax used: square brackets
versus parentheses. The code
below shows how we reference the
ColumnName property to return a
simple string, and how we access a
database object from the server’s
Databases collection:

Name := Results.ColumnName[3];
CurrentDatabase :=
Server.Databases.Item(1);

It’s important to note that the
range of indexes in DMO runs from
1 to N rather than 0 to N - 1 as is the
convention within Delphi’s VCL.

Getting Our Feet Wet
Before we can really do anything
with DMO, we have to connect to a
server. For this we instantiate a
SQLServer class. Figure 3 shows
some of the things we can do with a
SQLServer. For our first simple ven-
ture into DMO, we’ll connect to a
server and get a list of the data-
bases available on the server.
From Figure 3, it looks like iterating
through the Databases collection
will get us what we want. Looking
at Figure 4 we see that, sure
enough, the Database object will
reveal its name. Listing 1 shows
just how this is done.

Getting at the tables within the
database is just as easy. Usually
when we work with a database we
will refer to it by name, so we have
to search the server’s list of data-
bases by name until we find the
Database object we want. Then we
examine its Tables collection.
Figure 5 shows us what we can
expect from a Table.

Listing 2 shows how we can get a
list of non-system tables in a
database, assuming we have a con-
nected SQLServer object to work
with. Conveniently, the Table
object includes a boolean property
called SystemObject, which tells us
whether or not the table is a
system table.

➤ Left: Figure 3, Right : Figure 4

SQLServer Members (Abridged List)

BeginTransaction Start a transaction

CommitTransaction Commit a transaction

Connect Log into a server

Databases Collection of Database objects

Disconnect Log out of the server

ExecuteImmediate Execute an SQL query

ExecuteWithResults Execute an SQL query returning
a result set

HostName Name of the client computer

KillDatabase Drop a database

KillProcess Terminate a client connection

Logins Collection of user logins

Name Name of the SQL Server

RollbackTransaction Rollback a transaction

SaveTransaction Set a transaction savepoint

ShutDown Shutdown the SQL Server service

Start Startup the SQL Server service

Database Members (Abridged List)

Checkpoint Flushes the dirty pages cache

Defaults Collection of Default objects

Dump Performs a database backup

ExecuteImmediate Execute an SQL query

ExecuteWithResults Execute an SQL query returning
a result set

Grant Grant user permissions

Load Restore a database from backup

Name Name of the database

Parent The SQLServer object over this database

Remove Drop the database

Revoke Revoke user permissions

Rules Collection of Rule objects

StoredProcedures Collection of StoredProcedure objects

SystemObject Indicates a system database

Tables Collection of Table objects

Views Collection of View objects



32 The Delphi Magazine Issue 32

OK, enough beating around the
bush. How do we get at the actual
data in the tables? All data manipu-
lation must be done through SQL
queries. Both the SQLServer and
Database classes include methods
to execute queries: ExecuteImmedi-
ate and ExecuteWithResults. Exe-
cuteImmediate works just like
TQuery.ExecSQL and is meant for
queries that do not return a result
set (UPDATE, DELETE, etc). Execute-
WithResults is like TQuery.Open and
is meant for queries returning data
(SELECT). In practice, Execute-
WithResults can be used for all que-
ries since, unlike TQuery, no error
will be generated if we do so, and
we can easily detect the fact that
no data has been returned.

The query to execute is passed
into ExecuteWithResults as a string
of characters. The query’s results
are handed back to us in the form
of an instance of the QueryResults
class. QueryResults is analogous to
Delphi’s TDataSet class and encap-
sulates a matrix of variable data
(see Figure 6).

Listing 3 shows a code snippet
that executes a query and displays
the column names and data in a
TMemo control called memResults. We
pass in the database object of the
database in which we want to run
our query (which we get from
SQLServer.Databases) and a string
containing our query. It is then a
simple matter to loop through the
columns and rows and fetch the
column names and cell data to dis-
play in a simple matrix.

We have to use the GetColumn-
Type method to determine which
method we need to retrieve a given
cell’s data. GetColumnType returns
an integer that indicates the
column’s datatype. Fortunately,
the type library defines a number
of constants for us which we can
use to symbolically represent
the datatype. For example,
SQLOLE_DTypeInt4 means the
column is a 32-bit integer datatype.
We arbitrarily decided to display
each column with a width of 20, but
with a little ingenuity we could use
ColumnMaxLength to dynamically
change the width of each column.

In what seems to be the most
glaring problem with the DMO

procedure GetDatabaseNames(aList: TStrings);
var
Server: SQLServer;
I: Integer;

begin
Server := CoSQLServer.Create;
try
with Server do begin
Connect('MyServer', 'SteveT', 'abracadabra');
aList.Clear;
for I := 1 to Databases.Count do
aList.Add(Databases.Item(I).Name);

Disconnect;
end;

finally
Server := nil;

end;
end;

➤ Listing 1

procedure GetTableList(aServer: SQLServer; aDatabaseName: string;
aList: TStrings);

var
I: Integer;
CurrentDatabase: Database;

begin
{ Search the server for the given database; no error checking if
the databasename is invalid }

with aServer do begin
for I := 1 to Databases.Count do
if CompareText(Databases.Item(I).Name, aDatabaseName) = 0 then begin
CurrentDatabase := Databases.Item(I);
Break;

end;
end;
with CurrentDatabase.Tables do begin
{ the collection of Table objects }
aList.Clear;
for I := 1 to Count do
if not Item(I).SystemObject then
{ omit system tables }
aList.Add(Item(I).Name);

end;
end;

➤ Listing 2

Table Members (Abridged List)

Checks Collection of Check objects (table-level check constraints)

Columns Collection of Column objects (column definitions)

DataSpaceUsed Disk space used by table rows

Indexes Collection of Index objects

IndexSpaceUsed Disk space used by table indexes

Keys Collection of Key objects

Name Name of the table

Parent The Database object over this table

PrimaryKey Primary key for the table

Refresh Refreshes tables values from the server

Remove Drops the table

Rows Number of rows in the table

Script Produces an SQL script to create the table

SystemObject Indicates a system table

Triggers Collection of Trigger objects

TruncateData Deletes all rows in the table

UpdateStatistics Updates the data distribution statistics for all indexes
on the table

➤ Figure 5



April 1998 The Delphi Magazine 33

procedure GetQueryResults(aDatabase: Database;
aQuery: string);

var
Col, Row: Integer;
S: string;
Results: QueryResults;

begin
Results := aDatabase.ExecuteWithResults(aQuery);
with Results do begin
{ echo the column names }
S := '';
for Col := 1 to Columns do
S := S + Format('%-20.20s ', [ColumnName[Col]]);

memResults.Lines.Add(S);
{ echo the cell values }
for Row := 1 to Rows do begin
S := '';
for Col := 1 to Columns do
case ColumnType[Col] of
SQLOLE_DTypeChar,
SQLOLE_DTypeVarchar,
SQLOLE_DTypeText,
SQLOLE_DTypeDateTime,
SQLOLE_DTypeDateTime4 :
S := S + Format('%-20.20s ',

[GetColumnString(Row, Col)]);
SQLOLE_DTypeInt1,

SQLOLE_DTypeInt2,
SQLOLE_DTypeInt4 :
S := S + Format('%-20d ',

[GetColumnLong(Row, Col)]);
SQLOLE_DTypeFloat4,
SQLOLE_DTypeMoney4 :
S := S + Format('%-20g ',

[GetColumnFloat(Row, Col)]);
SQLOLE_DTypeFloat8,
SQLOLE_DTypeMoney :
S := S + Format('%-20g ',

[GetColumnDouble(Row, Col)]);
SQLOLE_DTypeImage :
S := S + Format('%-20.20s ', ['(image)']);

SQLOLE_DTypeVarBinary,
SQLOLE_DTypeBinary :
S := S + Format('%-20.20s ', ['(binary)']);

SQLOLE_DTypeBit :
S := S + Format('%-20d ',

[Ord(GetColumnBool(Row, Col))]);
else
S := S + Format('%-20.20s ', ['(xxxxxx)']);

end;
memResults.Lines.Add(S);

end;
end;

end;

QueryResults Members (Abridged List)

Columns Number of columns in the current result set

ColumnMaxLength Returns the maximum length of data for a given column

ColumnName Returns the name of a given column

ColumnType Returns the datatype of a given column

CurrentResultSet The current result set [1..ResultSets]

GetColumnBinary Returns a cell’s data as an array of Bytes

GetColumnBool Returns a cell’s data as a WordBool

GetColumnDate Returns a cell’s data as a TDateTime

GetColumnDouble Returns a cell’s data as a Double

GetColumnFloat Returns a cell’s data as a Single

GetColumnLong Returns a cell’s data as a LongInt

GetColumnString Returns a cell’s data as a WideString

Refresh Reexecutes the query to return current values from the server

ResultSets Number of result sets

Rows Number of rows in the current result set

➤ Figure 6

design, there is no reliable way to
detect the value ‘null’ within a
result set column.

Queries Returning
Multiple Result Sets
With SQL Server, it is possible for a
query script or stored procedure
to return more than one result set.
While such a thing does not
happen often in ad hoc queries,
there are a number of built-in
system stored procedures that do
this. For example, Figure 7 shows
the output from the sp_help system
stored procedure, which is being
used to display information about
a table (Authors) in the database.
This procedure uses several differ-
ent SELECT statements to return
information about the table. This
means several different result sets
are returned from one invocation
of this procedure. Looking at
Figure 7, the first result set con-
tains one row showing the table
name, owner, and type. The third
result set contains one row for
each column in the table. The fifth
result set contains one row for
each index on the table. And so on.

Delphi’s TDataSet is not designed
to deal with a single query execu-
tion that returns multiple result
sets with differing column configu-
rations. At best you’ll only see the
contents of the first result set. At
worst, you’ll get a BDE error. In
general, this isn’t a significant limi-
tation of TDataSet. The need to
create queries like this will only

➤ Listing 3

➤ Figure 7



34 The Delphi Magazine Issue 32

come up rarely, and they can
always be broken into separate
queries. It also seems clear that
system procedures like sp_help are
meant to be executed in an interac-
tive environment like ISQL and
their output read by human eyes,
rather than processed by program
logic.

However, it may be helpful to be
able to run procedures like sp_help
and capture their output within a
program. For example, one tool we
have here at Ultimate Software
Group handles all our table struc-
ture definitions and rebuilds tables
as necessary when we make
changes. Each time we make a
build of the project, any number of
tables might be restructured as
well. As an aid to our quality assur-
ance process, it would be helpful to
have an audit report showing the
structure before and after the auto-
mated rebuild of each table. The
output of sp_help is perfect for this
job, so it would be handy to call it
from within the rebuild tool and
save its output to a text file for
review. Unfortunately, because it

returns more than one result set,
we can’t get the full output from
sp_help using TQuery or TStored-
Proc. We would have to write our
own series of queries to gather the
same information.

The QueryResult class in DMO is
specifically designed for more
than one result set. The property
ResultSets give us the number of
different result sets returned by
the query. Actually, if we’ve run a
query that does not return any
results, such as an UPDATE state-
ment, then no result sets are
returned and the property Result-
Sets equals zero. This should not
be confused with a query that
returns a result set with no rows,
such as a SELECT statement with a
WHERE clause which doesn’t happen
to match any rows. In this case one
result set is returned (ResultSets =
1) with no rows (Rows = 0).

We set the property CurrentRe-
sultSet to switch between the
result sets returned by the query.
When CurrentResultSet = 1, then
we are operating with the first
result set. All the query properties

and methods are relative to the
current result set. For example,
Rows gives us the number of rows in
the current result set, not all result
sets combined. To retrieve the full
output of any query, we simply
loop through the result sets by
setting CurrentResultSet to values
between 1 and ResultSets
inclusive.

Conclusion
Microsoft SQL Server’s Distributed
Management Object library pro-
vides us with an OLE Automation
interface to a SQL Server database
backend. We can use this API to
access the server’s databases
simply by referencing object prop-
erties and methods. It provides
a well designed object-oriented
alternative to tasks normally done
through unstructured SQL.

Steve Troxell is a software
engineer with Ultimate Software
Group in the USA. He can be
contacted via email at
Steve_Troxell@USGroup.com


	Getting Started With DMO
	Getting Our Feet Wet
	Queries Returning Multiple Result Sets
	Conclusion

